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Unexpectedly accurate and parsimonious approximations for balls in Rd and
related functions are given using half-spaces. Instead of a polytope (an intersection
of half-spaces) which would require exponentially many half-spaces (of order ( 1

= )d )
to have a relative accuracy =, we use T=c(d 2�=2) pairs of indicators of half-spaces
and threshold a linear combination of them. In neural network terminology, we are
using a single hidden layer perceptron approximation to the indicator of a ball.
A special role in the analysis is played by probabilistic methods and approximation
of Gaussian functions. The result is then applied to functions that have variation Vf

with respect to a class of ellipsoids. Two hidden layer feedforward sigmoidal neural
nets are used to approximate such functions. The approximation error is shown to
be bounded by a constant times Vf �T 1�2

1 +Vf d�T 1�4
2 , where T1 is the number of

nodes in the outer layer and T2 is the number of nodes in the inner layer of the
approximation fT1 , T2

. � 2000 Academic Press

1. INTRODUCTION

There already exists a rich literature on approximation of convex bodies
with other sorts of convex bodies and polytopes. See, for example, Gruber
[7], Fejes To� th [6]. Like other convex bodies, a ball is an infinite
interesection of tangent half-spaces. For a unit ball B in Rd,

B= ,
a # S d&1

[a } x�1], (1)
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where S d&1 is the unit sphere in Rd. If we approximate it with the intersec-
tion of T, T�d+1, of the half-spaces in (1), then we are approximating
the ball with a T-faced polytope PT .

There are results that bound the approximation error between convex
bodies and their polytope approximators. Dudley [5] has shown that for
each convex body B, there exists a constant c such that for every T there
is a polytope PT achieving

$H(B, PT)�
c

T 2�(d&1) , (2)

where $H is the Hausdorff metric. Results from Schneider and Wieacker
[17] and Gruber and Kenderov [8] have shown that for a convex body
with sufficiently smooth boundary such as the ball B, there exists a
constant c such that for every polytope PT ,

$(B, PT)�
c

T 2�(d&1) , (3)

where $ can be either the Hausdorff or the Lebesgue measure of the sym-
metric difference. Hence for an approximation error of =, we would require
a polytope with many faces of order ( 1

=)
(d&1)�2, which is exponential in d.

To avoid this curse of dimensionality, we will use T half-spaces in the
approximation in a different manner.

To illustrate the idea, consider the set of points in at least k out of n
given half-spaces. For instance, if we were given the T=9 half-spaces deter-
mining the polygon approximation in Fig. 1, k=9 yields the nonagon

FIGURE 1
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FIGURE 2

inscribed in the circle. In Fig. 2, we use T=9 half-spaces, but we set the
threshold at k=8 to obtain the star-shaped approximation shown. In
higher dimensions, our approximation will look somewhat like a jagged
multi-faceted star-shaped object.

Here we can think of the T half-spaces as providing a test for mem-
bership in the set. Instead of requiring all T tests to be passed, we permit
membership with at least k passed out of T. An extension of this idea is to
weigh each test and determine membership by a weighted count exceeding
a threshold.

While polygon approximation may appear superior in the low-dimen-
sional example given in the figure, in high dimensions, polytopes have
extremely poor accuracy as shown in (3). In contrast we show that the
use of a weighted count to determine membership in a set permits accuracy
that avoids the curse of dimensionality. Indeed, with 2T=cd 2�=2 indicators
of half-spaces, where c is a constant, we threshold a linear combination of
them, in order to obtain accuracy =. Note that the number of indicators of
half-spaces needed is only quadratic in d and not exponential in d as in the
classical method.

Our approximation to a ball takes the form

N2T={x # Rd : :
2T

i=1

ci1[ai } x�bi]
�k=.

Let f� 2T=1N2T
be the indicator (characteristic) function of this set. In

neural network terminology, we are using a two hidden layer perceptron
approximation to the indicator of a ball. We show that there is a constant
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c such that for every T and d, there is such an approximation N2T that the
Hausdorff distance between a ball BR of radius R and N2T satisfies

$H(BR , N2T)�c } R �d(d+1)
T

,

where c is some real-valued constant. A special role in the analysis is
played by probabilistic methods and approximation of Gaussian functions.

2. SOME BACKGROUND AND THE GAUSSIAN FUNCTION

A single hidden-layer feedforward sigmoidal network is a family of
real-valued functions fT (x) of the form

fT (x)= :
T

i=1

ci ,(ai } x+bi)+k, x # Rd (4)

parametrized by internal weight vectors ai in Rd, internal location
parameters bi in R, external weights ci and a constant term k (Cybenko
[4] and Haykin [9]). By a sigmoidal function, we mean any nondecreasing
function on R with distinct finite limits at +� and &�. Such a network
has d inputs, T hidden nodes and a linear output unit. It implements ridge-
functions ,(ai } x+bi) on the nodes in the hidden layer. Here we will
exclusively use the Heaviside function ,(z)=1[z�0] , in which case (4) is a
linear combination of indicators of half spaces. Such a network is also
called a perceptron network (Rosenblatt [15, 16]). Thresholding the out-
put of a single hidden-layer neural net at level k1 , we obtain f� T (x)=
,( fT (x)&k1) which equals

f� T (x)=, \ :
T

i=1

ci ,(a i } x+bi)+k$+ . (5)

For simplicity in the notation, we will often omit the parameters ai , bi , ci ,
and k in the arguments of fT and f� T .

To approximate a ball we first consider approximation of the Gaussian
function f (x)=exp(&|x|2�2) and then take level sets. A level set of a func-
tion f at level k is simply the set [x # Rd : f (x)�k]. Using the fact that the
Gaussian is a positive definite function with Fourier transform (2?)&d�2

exp(&|||2�2), so that f has a representation in the convex hull of
sinusoids, it is known that f (x) can be expressed using the convex hull of
indicators of half-spaces (see Barron [1, 2], Hornik et al. [11], Yukich et
al. [19]). We take advantage of a similar representation here. We use | } |
to denote the Euclidean L2 norm.
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Let BK be a ball of radius K large enough that it would contain B and
N2T . As shown in Appendix A, on BK the Gaussian function satisfies

f (x)=|
Rd |

|a| K

&|a| K
1[a } x+b�0] sin(b)

exp(&|a| 2�2)
(2?)d�2 db da+exp \&

K 2

2 + .

(6)

Here exp(&K2�2) is the value of the Gaussian evaluated on the surface of
the ball BK . As we will see later, we can arrange for the neural net level set
N2T to be entirely contained in B and hence take K=1.

Decomposing the integral representation of f into positive and negative
parts, we have

f (x)&exp \&
K2

2 +=f1(x)& f2(x) (7)

=|
Rd |

|a| K

&|a| K
1[a } x+b�0] sin+(b)

exp(&|a| 2�2)
(2?)d�2 db da

&|
Rd |

|a| K

&|a| K
1[a } x+b�0] sin&(b)

exp(&|a|2�2)
(2?)d�2 db da

=&1 | 1[a } x+b�0] dV1&&2 | 1[a } x+b�0] dV2 , (8)

where V1 is the probability measure for (a, b) on Rd with density
1[&|a| K<b<|a| K] sin+(b)(exp(&|a|2�2)�(2?)d�2 &1) with normalizing constant

&1=|
Rd |

|a| K

&|a| K
sin+(b)

exp(&|a|2�2)
(2?)d�2 db da

and similarly for V2 and &2 (with sin&(b) in place of sin+(b) ). We denote
the positive part of sin(b) by sin+(b) and the negative part of sin(b) by
sin&(b). The total variation of the measure used to represent f is

&=&1+&2

=|
Rd |

|a| K

&|a| K
|sin(b)|

exp(&|a| 2�2)
(2?)d�2 db da

<|
Rd

2 |a| K exp(&|a|2�2)
(2?)d�2 da (9)

�2K - d. (10)
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An integral representation of the Gaussian as an expected value invites
Monte Carlo approximation by a sample average. In particular, both f1(x)
and f2(x) in (7) are expected values of indicators of half-spaces in Rd. Thus
a 2T-term neural net approximation to f (x) is then

f2T (x)&exp \&
K 2

2 +=
&1

T
:
T

i=1

,(a i } x+bi)&
&2

T
:
2T

i=T+1

,(ai } x+bi),

(11)

where the parameters (ai , bi)
T
i=1 are drawn at random independently from

the distribution V1 and (ai , bi)
2T
i=T+1 from V2 . The sampling scheme is

simple. For example, to obtain an approximation for f1(x), first draw a
from a standard multi-variate normal distribution over Rd, then draw b
from [&|a| K, |a| K] with density proportional to sin+(b).

We now bound the L� approximation error between f (x) and f2T (x).
We will draw on symmetrization techniques and the concept of Orlicz
norms in empirical process theory (see, for example, Pollard [13]), and the
theory of Vapnik�C8 ervonenkis classes of sets (Vapnik and C8 ervonenkis
[18]). With the particular choice of 9(x)= 1

5 exp(x2) used by Pollard
[13], the Orlicz norm of a random variable Z is defined by

&Z&9=inf {C>0 : E exp \Z2

C2+�5= .

We examine the approximation error between f1(x) and f1, T (x), its T-term
neural net approximation, first.

From empirical process theory, the following lemma is obtained. See
Appendix B.

Lemma 1. Let !=(a, b) and gx(!)=,(a } x+b). If h(x)=� ,(a } x+b)
P(da, db) for x # BK for some probability measure P on (a, b), then there
exist !1 , !2 , ..., !T such that

sup
x # BK

} 1T :
T

i=1

gx(! i)&h(x) }�34�d+1
T

. (12)

Recall that for the approximation of the Gaussian function, the
approximation f2T less exp(&K2�2) can be split up into two parts,
f1, T (x)=(&1�T ) �T

i=1 gx(!i) and f2, T (x)=(&2 �T ) �2T
i=T+1 gx(!i), which
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approximate the positive and negative parts f1 and f2 respectively. Using
Lemma 1, we see that

sup
x # BK

} &1

T
:
T

i=1

gx(!i)& f1(x) }�34&1 �d+1
T

(13)

and similarly,

sup
x # BK

} &2

T
:
2T

i=T+1

gx(!i)& f2(x) }�34&2 �d+1
T

. (14)

Hence by the triangle inequality,

sup
x # BK

| f2T (x)& f (x)|�34(&1+&2) �d+1
T

=34& �d+1
T

�68K �d(d+1)
T

. (15)

3. BOUNDING THE HAUSDORFF DISTANCE OF
THE APPROXIMATION

The Hausdorff distance between two sets F and G is defined as

$H(F, G)=max[sup
x # F

inf
y # G

|x& y|, sup
y # G

inf
x # F

|x& y|].

The norm | } | is the usual Euclidean norm in Rd. We bound the Hausdorff
distance between the ball and its approximating set $H(B, N2T) in this
section. The ball is assumed to be centered at the origin. However, we
apply the result later to other balls and ellipsoids that are not necessarily
centered at the origin. Note that the unit ball B in Rd may be represented as

B={x : exp \&
|x|2

2 +�exp \&
1
2+= .

We define N2T as

N2T=[x : f2T (x)�exp(&1
2)+K=T].
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Let f (x)=exp(&|x|2�2) and let f2T (x) be the approximation with T
pairs of indicators. Here

=T :=68 �d(d+1)
T

,

for which we have the L� error between the Gaussian and its approximant
bounded above by

sup
x # BK

| f2T (x)& f (x)|�=T . (16)

We are going to bound the Hausdorff distance between B and N2T , using
this sup norm bound on the error between the functions f and f2T which
yield B and N2T as level sets.

Theorem 1. Let BR be a ball of radius R in Rd centered at the origin,
and let N2T be the level set of the neural net approximation. For sufficiently
large T, such that =T� 1

2 (exp(&1
4)&exp(&1

2)),

$H(BR , N2T)�318R �d(d+1)
T

.

Proof. The ball B coincides with the level set of f at the level exp(&1
2).

Let T be such that =T is less than 1
2K exp(&1

2). Choose r0 such that
exp(&r2

0 �2)=exp(&1
2)+2K=T . Let Br0

be the ball of radius r0 centered at
the origin. If x # N2T , then exp(&1

2)� f2T (x)&K=T�exp(&|x| 2�2) which
implies that x # B. Similarly if x # Br0

, then exp(&1
2)+K=T�exp(&|x|2�2)

&K=T� f2T (x), which implies that x # N2T . Thus

Br0
/N2T /B.

Both B and its approximating set N2T are sandwiched between Br0
and B.

Consequently

$H(B, N2T)�1&r0 .

The function g(r)=exp(&r2�2) has derivative &rg(r) of magnitude
which is largest at r=1. Now

r0=- 2 log(1�(e&1�2+2K=T))

=- 1&2 log(1+2K=Te1�2),

which is close to 1. If T is large enough that =T is less than 1
2K

(exp(&1
4)&exp(&1

2)), then r0g(r0)�(1�- 2) exp(&1
2), and hence using the

mean-value theorem
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$H(B, N2T)�1&r0

�
g(r0)& g(1)

r0 g(r0)

�2 - 2e K=T

�136 - 2e K �d(d+1)
T

. (17)

Now we set K. From Section 2, BK need only be large enough to cover
both the unit ball B and its approximation set N2T , which we have
arranged to be contained in B. Thus we can take BK to be B, whence K=1.
Again when =T� 1

2(exp(&1
4)&exp(&1

2)), we have

$H(B, N2T)�136 - 2e �d(d+1)
T

�318 �d(d+1)
T

. (18)

For a ball BR of radius R, the Hausdorff distance between it and its
approximation set is simply 318R -

d(d+1)
T . This concludes the proof of

Theorem 1. K

4. AN L1 BOUND

Let BR be a ball of radius R, N2T the level set induced by the approxi-
mation as explained in Section 1, + is the Lebesgue measure, and $ is the
Hausdorff distance between BR and N2T as obtained above. Since the
symmetric difference BRqN2T is included in the shell BR+$"BR&$ , one has

| |1BR
&1N2T

|
+(dx)
+(BR)

=
+(BRqN2T)

+(BR)

�
+(BR)&+(BR&$)

+(BR)

�1&\1&
$
R+

d

�d
$
R

�318d �d(d+1)
T

, (19)

thus the following theorem is established.
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Theorem 2. The relative Lebesgue measure of the symmetric difference
+(BR qN2T)�+(BR) between BR and its approximation set N2T is bounded
above by

+(BR qN2T)
+(BR)

�318d �d(d+1)
T

.

5. ELLIPSOID APPROXIMATION

Consider an ellipsoid E=[x : x$Mx�1] centered at the origin with
M=A$A strictly positive definite with a d_d positive definite square root A.
Equivalently E=[x : exp(&x$A$Ax�2)�exp(&1�2)] is the level set of a
Gaussian surface. In a similar manner to the ball, it can also be accurately
and parsimoniously approximated by a single hidden-layer neural net. Let
the eigenvalues of A be r1�r2� } } } �rd with the corresponding eigen-
vectors [r1 , r2 , ..., rd ]. If the approximating set for the unit ball takes the
form [x : �2T

i=1 ci 1[ai } x�bi]
�k], then the one for the ellipsoid E is

E2T={x : :
2T

i=1

ci 1[ai } Ax�bi]
�k= .

We are interested in bounding $H(E, E2T), the Hausdorff distance between
the ellipsoid and its approximating set.

Theorem 3. The Hausdorff distance between the ellipsoid E and its
approximating set E2T is bounded above by

318rd �d(d+1)
T

. (20)

Proof. The matrix transformation A transforms the unit ball to an
ellipsoid by stretching the unit radius to length ri in the ri direction and the
approximating set NT is similarly stretched in the same way to E2T . For
the ball Br0

(as defined in the proof of Theorem 1), the matrix transforma-
tion A transforms it to an ellipsoid E$ by stretching its radius to length ri r0

in the ri direction. Thus the order of inclusivity is still preserved after the
transformation and

E$/E2T /E.

Note that the ellipsoids E and E$ are similar, centered at the origin and
aligned along the same axes. The only difference is in the scale.
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The two extreme parts of the ellipsoids are along the direction r1 and rd .
The ellipsoid is contained in a ball of radius rd . Thus $H(E, E2T) is
bounded above by the greatest distance between E and E$, and this occurs
along the direction of rd , and hence is bounded above by the Hausdorff
distance between that of a ball of radius rd (containing the ellipsoid) and
a ball of radius rd r0 , and that is in turn bounded above by

318rd �d(d+1)
T

. K

The error is the same as for approximation of a ball except that the
radius of the ball is replaced by the maximal eigenvalue (length of major
axis).

Now consider an ellipsoid E with axial lengths r1� } } } �rd&1�rd=R
and its approximating set E2T . The ellipsoid E $=(1& $

R) E is a scaled
down version of E and it has axial lengths r1(1& $

R)� } } } �rd&1(1& $
R)�

rd (1& $
R)=R&$. Recall that the approximation set E2T is obtained by

scaling N2T (the approximation set for the unit ball) by a factor of ri along
the i th axis of the ellipsoid E. The Hausdorff distance between E and E2T

is $ which is bounded by 318R -
d(d+1)

T from Theorem 3.

Corollary 1. The measure of the symmetric difference +(EqE2T)
between E and its approximation set E2T is bounded above by

+(EqE2T)�318+(E ) d �d(d+1)
T

.

Proof. Since the difference EqE2T is included in the shell E"E$, we
obtain

| |1E&1E2T
| +(dx)=+(E )&+(E2T)

�+(E )&+(E$)

=+(E )&\1&
$
R+

d

+(E )

=+(E ) \1&\1&
$
R+

d

+
�+(E ) d

$
R

�318+(E ) d �d(d+1)
T

. K (21)
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6. REMARKS

In earlier work of one of the authors (Cheang [3]), an L2 approxima-
tion bound of order T &1�6 was obtained with T pairs of half-spaces in a
neural net with a ramp sigmoid applied to the output. Here our order
T &1�2 bound gives an improved rate.

The integral representation to the Gaussian on BK may also be written

exp \&
|x|2

2 +=|
Rd |

|a| K

&|a| K
1[sgn(b) a } x+b sgn(b)�0] |sin(b)|

exp(&|a|2�2)
(2?)d�2 db da

&
1
2 |

Rd |
|a| K

&|a| K
sin&(b)

exp(&|a|2�2)
(2?)d�2 db da

+exp \&
K 2

2 + . (22)

Sampling from the distribution V proportional to |sin(b)| exp(& |a|2

2 ), the
approximation to the ball takes the form

NT={x # Rd : :
T

i=1

1[ai } x�bi]
�k= ,

that is, x is in NT if it is in at least k of the half-spaces. This approximation
achieves

$H(B, NT)�318 �d(d+1)
T

. (23)

In particular, when 2T sigmoids are used in the approximation,

$H(B, N2T)�318 �d(d+1)
2T

when the representation (22) is used, reducing the constant by a factor of
1�- 2 from the bound in Theorem 1.

It may be possible to extend our results to neural network approxima-
tion of other classes of closed convex sets with smooth boundaries, for
example, to classes of sets of the form D=[x # Rd : f (x) } f (x)�1], where
f : Rd � Rd has a strictly positive definite derivative. If this is achieved, the
results pertaining to functions which have total finite variation with respect
to a class of ellipsoids (in the following section) could be extended to those
for a class of convex sets with some suitable smoothness properties.
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7. APPROXIMATION BOUNDS FOR TWO LAYER NETS

The second (outer) layer of a two layer net takes a linear combination
of level sets H of functions represented by linear combinations on the first
(inner) layer. The class of sets represented by level sets of combinations of
first layer nodes include half-spaces and rectangles, and (as we have seen)
approximations to ellipsoids.

A function f is said to have variation Vf, H with respect to a class of sets
H if Vf, H is the infimum of numbers V such that f�V is in the closure of
the convex hull of signed indicators of sets in H, where the closure is taken
in L2(PX). A special case of finite variation is the case we call total varia-
tion with respect to a class of sets. Suppose f (x) defined over a bounded
region S in Rd. We say that f has total variation V with respect to a class
of sets H=[H! : ! # 5] if there exist some signed measure v over the
measurable space 5 and

f (x)=|
5

1H!
(x) v(d!) for x # S, (24)

and if v has finite total variation V. The sets H! are parametrized by ! in 5.
In our context, the H! are half spaces in Rd where the ! consist of the
location and orientation parameters. In the event that the representation
(24) is not unique, we take the measure v that yields the smallest total
variation V.

The function class FV, H of functions with variation Vf, H bounded by V
arises naturally when thinking of the functions obtained by linear combina-
tions on a layer of a network where the sum of absolute values of the
coefficients of linear combination are bounded by V and the level sets from
the preceding layer yield the sets in H. In our analysis of the two layer case
we will take advantage of both L� approximations bounds (used to yield
approximations to the indicators of ellipsoids in the inner layer) and L2

approximation bounds for convex hulls of indicators of ellipsoids (essen-
tially achieved by the outer layer of the network). First we state a simple
L2 approximation bound, which is a counterpart to the L� bound of
Lemma 1, but with smaller constants (and without requirement of integral
representation).

Lemma 2. If f has variation Vf with respect to a class of sets H then for
each T there exists H1 , ..., HT and c1 , ..., cT with �T

i=1 |c i |�Vf such that the
approximation fT (x)=�T

i=1 ci 1Hi
(x) achieves

& f& fT&2�
Vf

- T
. (25)
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This lemma as a tool of approximation theory and two probabilistic
proofs (one based on probabilistic sampling and one based on a greedy
algorithm) are in Barron [2] and (with a somewhat larger constant) an
earlier form of the greedy algorithm proof of the approximation result is in
Jones [12]. The probabilistic sampling bound on L2 norms of averages
used in the proof is classical Hilbert theory.

Proof. The proof is based on the Monte Carlo sampling idea as in
Section 2. First fix T and suppose that f is not identically constant.
(Equality occurs in (25) only if f is identically constant.) Since f is in the
closure of the convex hull of G=[\Vf 1H : H # H], one takes a f� that is
a (potentially very large) finite convex combination with & f& f� &2<$. In
particular we take $==�- T and = small, say =<Vf&- V 2

f && f &2�4, which
is less than & f &

2 .
By the triangle inequality,

& f& fT&2�& f& f� &2+& f� & fT &2

�
=

- T
+& f� & fT&2 . (26)

Suppose f� =�i pi gi with gi in G, and pi>0 with �i pi=1. Since f� is an
expectation, we apply the Monte Carlo sampling technique. Draw indices
i1 , ..., iT independently according to the distribution pi in the representation
of f� and let fT= 1

T �T
j=1 g ij

. Then

Ei & f� & fT&2
2=

Ei &gi&2&& f� &2

T

�
V 2

f && f� &2

T

�
V 2

f && f &2�4

T
, (27)

and so there exists a choice of such an fT with

& f� & fT&2
2<

V 2
f && f &2�4

T
.

That is,

& f� & fT&2<
- V 2

f && f &2�4

- T
. (28)

Substituting this bound back into (26) completes the proof. K
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As a consequence of the lemma above, we have the following corollary
involving approximation with a class of ellipsoids. Let ! be the parameters
that define the ellipsoids, and 1E!

(x) the indicator of the ellipsoid.

Corollary 3. If f has variation Vf=Vf, E with respect to the class E of
ellipsoids then there is a choice of ellipsoids E1 , ..., ET and s1 , ..., sT1

#
[&1, +1], and ci=Vf si �T1 such that

fT1
(x)= :

T1

i=1

ci 1Ei
(29)

satisfies

& fT1
& f &2�

Vf

- T1

. (30)

The indicators of ellipsoids have two layer sigmoidal network approxi-
mations consisting of a single outer node and a single hidden inner layer.
These approximations to 1Ei

may be substituted into the approximation in
(29) to yield a two hidden layer approximation to f.

Let E=[E! : ! # 5] be the set of ellipsoids with +(E!)�+(S) where + is
the Lebesgue measure. Let PX be the uniform probability measure over S,
and let E2T2

be the neural net level set with 2T2 sigmoids that is used to
approximate E. Using the bound in Corollary 1, for each E # E,

|
S

|1E (x)&1E2T2
(x)|2 PX (dx)=

+((E&E2T2
) & S)

+(S)

�
+(E )
+(S)

318d �d(d+1)
2

�318d �d(d+1)
T2

. (31)

After replacing the indicators of the ellipsoids in (29) with their neural
net approximations, we obtain

fT1 , 2T2
= :

T1

i=1

ci , \ :
T2

j=1

|ij ,(aij } x&b ij)&d i+ . (32)

The following theorem bounds the mean-squared approximation error. An
ellipsoid in E is denoted by E.

Theorem 4. If f has variation Vf with respect to the class of ellipsoids E,
with +(E )�+(S) and PX is the uniform probability measure over S, then
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there exist a choice of parameters (aij , b ij , c i , di , | ij) such that a two hidden
layer net with step activation function achieves approximation error bounded
by

& f& fT1 , 2T2
&2�

Vf

- T1

+Vf \318d �d(d+1)

T2
+

1�2

, (33)

and

& f& fT1 , 2T2
&1�

Vf

- T1

+Vf 318d�d(d+1)

T2

,

where & }&p denotes the Lp(PX) norm; provided that T2 is large enough that
68 - d(d+1)�T2 � 1

2 (exp(&1
4)&exp(&1

2)).

Proof. By the triangle inequality,

& f& fT1 , 2T2
&2�& f& fT1

&2+& fT1
& fT1 , 2T2

&2 . (34)

Now

& f& fT1
&2�

Vf

- T1

from Corollary 1. The other term on the right hand side of (34) is bounded
as follows. Let E� i be the neural net level set of the approximation to Ei

from Section 5. Then

& fT1
& fT1 , 2T2

&2=" :
T1

i=1

ci (1Ei
&1E� i

)"2

�
1

T1

:
T1

i=1

|ci | &1Ei
&1E� i

&2

�Vf \318d �d(d+1)
T2 +

1�2

, (35)

where (31) bounds the last inequality (35). K

The proof of the L1 bound is similar (using & f& fT1
&1�& f& fT1

&2�
Vf �- T1) except that the square root in (35) is not used in bounding
&1Ei

&1E� i
&1 .

We conclude with two examples of functions with variation with respect
to a class of balls (ellipsoids).
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Example 1. Convex Combination of Balls. Let B(a, b) denote a ball
centered at a with radius b. In R3, the function

f (x)=
4?

3
&- 2 ?(x2

1+x2
2+x2

3)1�2+
?

3 - 2
(x2

1+x2
2+x2

3)3�2

=| 1B(%, 1)(x) 1B(0, 1)(%) d% (36)

is a convex combination of indicators of balls. Thus

fT1
(x)=

4?
3T1

:
T1

i=1

1B(%i , 1)(x) (37)

is an approximation to f (x) where the %i 's are sampled from the uniform
distribution in a unit ball. We then approximate each ball 1B(%i , 1)(x) with
the form (5).

Example 2. A Radial Function Let +�2,

1
2 ( |x|&++2), +&2<|x|�+

f (x)={ 1
2 (++2&|x| ), +<|x|�++2 (38)
0, otherwise.

Then

f (x)=|
R

1(%&1, %+1)( |x| ) 1
21[&1, 1](%&+) d% (39)

and thus f (x) can be approximated by

fT1
(x)=

1
T1

:
T1

i=1

[1B(0, %i+1)(x)&1B(0, %i&1)(x)], (40)

where %i tiid Uniform (+&1, ++1).

APPENDIX A

Starting with the right hand side of (6) and recalling that |a } x|�|a| K
for all x # BK , we obtain
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|
Rd |

|a| K

&|a| K
1[a } x+b�0] sin(b)

exp(&|a|2�2)
(2?)d�2 db da (41)

=&Im |
Rd |

|a| K

&|a| K
1[a } x+b�0] exp(&ib)

exp(&|a|2�2)
(2?)d�2 db da

=&Im |
Rd _|

a } x+|a| K

a } x&|a| K
1[s�0] exp(&is) ds& exp(ia } x) exp(&|a| 2�2)

(2?)d�2 da

=&Im |
Rd _|

a } x+|a| K

0
exp(&is) ds&exp(ia } x) exp(&|a| 2�2)

(2?)d�2 da

=Im i |
Rd

[1&exp(&ia } x) exp(&i |a| K)]
exp(ia } x) exp(&|a|2�2)

(2?)d�2 da

=exp \&
|x|2

2 +&|
Rd

exp(&i |a| K) exp(&|a| 2�2)
(2?)d�2 da (42)

=f (x)&exp \&
K2

2 + . (43)

In (41), we did a substitution s=a } x+b.

APPENDIX B

We prove a more general version of Lemma 1. Let a parameterized class
of sets H=[H! : ! # 5] in Rd be given where 5 is a measurable space. Let
H� =[H� x : x # Rd] with H� x=[! : x # H!] be the dual class of sets in 5
parametrized by x.

First we define some terms that will be used in the lemma. Let G be a
class of functions mapping from X to R and let x1 , ..., xN # X. We say that
x1 , ..., xN are shattered by G if there exists r # RN such that for each
b=(b1 , ..., bN) # [0, 1]N, there is an g # G such that for each i,

g(xi) {�ri

<ri

if b i=1
if bi=0.

The pseudo-dimension is defined as

dimP(G)=max[N : _x1 , ..., xN , G shatters x1 , ..., xN] (44)

if such a maximum exists, and � otherwise. For the class of unit step func-
tions ,(a } x+b), the pseudo-dimension and the VC-dimension D coincide
and is d+1. The =-packing number DT (=, Lp) for a subset of a metric space
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is defined as the largest number m for which there exist points t1 , ..., tm in
the subset of the metric space with dp(ti , tj)>= for i{ j, where dp is the Lp

metric.

Lemma 4. If H� has VC-dimension D and if h is a function in the convex
hull of the indicators of sets in H which possesses an integral representation

h(x)=| 1H!
(x) P(d!) for x # BK ,

then there is a choice of !1 , !2 , ..., !T such that the approximation hT (x)=
1
T �T

i=1 1H!i
(x) satisfies

sup
x # BK

|hT (x)&h(x)|�34 �D
T

. (45)

Remark. Such a uniform approximation bound holds over any subset
of Rd in which the integral representation holds. In our application we use
BK , the ball of radius K.

Proof. Let gx(!)=1H� x
(!)=1H!

(x) and let _ i be independent random
variables taking the values \1 with probablity 1

2 . Define !
�
=(!1 , !2 , ..., !T),

where the !i are independently and identically distributed with respect to
P( } ), and _

�
=(_1 , _2 , ..., _T). By symmetrization, using Jensen's inequality

as in Pollard [13, p. 7], for C>0, we have

E9 \
supx # BK

|�T
i=1 gx(! i)&Th(x)|

C +
�E!

�
E_

�
9 \

2 supx # BK
|�T

i=1 _i gx(!i)|

C + . (46)

Conditioning on !, we need to find an upper bound to E_
�
9(2 supx # BK

|�T
i=1 _i gx(!i)| ). This involves bounding the Orlicz norm &2 supx # BK

|�T
i=1 _i gx(!i)|&9 with !

�
fixed. Using a result in Pollard [13, pp. 35�37],

"2 sup
x # BK

} :
T

i=1

_i gx(!i) }"9
�18 - T |

1

0
- log DT (=, L2) d=, (47)

where DT (=, L2) is the L2 =-packing number for H� , where the L2 norm
on 5 is taken with respect to the empirical probability measure on
!1 , !2 , ..., !T .
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From Pollard [13, p. 14],

DT (=, L2)�\3
=+

D

, (48)

uniformly over all !1 , !2 , ..., !T . We now work out an upper bound to
�1

0 - log DT (=, L2) d=. From the Cauchy�Schwartz inequality,

|
1

0
- log DT (=, L2) d=��|

1

0
log DT (=, L2) d=

=�D log 3&D |
1

0
log = d=

�- (1+log 3) D. (49)

Substituting (49) into (47), we see that

"2 sup
x # BK

} :
n

i=1

_ i gx(!i) }"9
�18 - (1+log 3) TD. (50)

From the definition of the Orlicz norm, the choice of C0=
18 - (1+log 3) TD ensures that

E_9 \
2 supx # BK

|�T
i=1 _ i gx(! i)|

C0 +�1,

and hence,

E9 \
supx # BK

|�T
i=1 gx(!i)&Th(x)|

C0 +�1. (51)

Thus we conclude that there exists !1 , !2 , ..., !T such that

9 \
supx # BK

|�T
i=1 gx(!i)&Th(x)|

C0 +�1,

whence

sup
x # BK

} 1T :
T

i=1

gx(!i)&h(x) }�18 - D(1+log 3) log 5

- T

�34 �D
T

. K (52)
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In our case, !=(a, b) and gx(!)=1H!
(x)=1[a } x+b�0] . The dual class of

sets in 5 are H� x=[! : gx(!)=1]=[(a, b) : a } x+b�0]. Since (a, b) #
Rd_R, which is a vector space of dimension d+1, the class of sets H� =
[H� x : x # Rd] has VC-dimension D=d+1 (Pollard [12, p. 20], Haussler
[10]). Thus Lemma 1.
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